
Bachelor’s Thesis Computing Science

Stronghold: Automating corporate se-
curity.

A novel approach at pipelining the entire security improvement cycle for Microsoft and Google
environments.

Joost Grunwald
s1057493

May 11, 2023

First supervisor/assessor:
dr. Simona Samardjiska

Second assessor:
dr. ir. Erik Poll



Abstract

This paper outlines a novel approach to the ongoing security improvement
cycle for both Microsoft and Google environments. The aim is to develop
tools for Active Directory, Azure Active Directory and Google Workspace.
In addition to this, we introduce Besieger for auditing websites. We integrate
Nessus into our pipeline for internet network auditing. We also introduce
phishing simulations specifically finetuned for Google and Microsoft envi-
ronments to do aimed phishing simulations. The proposed pipeline involves
a series of steps for the assessment, planning, deployment, and monitoring
of security solutions to strengthen and protect corporate environments. We
call the entire system Stronghold, a solution which aim is to automate the
security improvement cycle. It aims to go from vulnerability detection to
remediation within one single encapsulated environment. Stronghold man-
ages to get State of the Art results in vulnerability detection and remediation
while also introducing a new security remediation pipeline called FRIS. The
goal of this pipeline is to offer information, further research, and even direct
solutions and scripts for found vulnerabilities. We develop one environment
aimed at both State of the Art results and State of the art usability and
speed. This is to combat the high-cost problem that often arises in corpo-
rate environments where high costs or minimum budget leads to ignorance
of security problems.



Contents

1 Introduction 3

2 Preliminaries 5
2.1 Active Directory . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Services . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Group policies . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Domain name services . . . . . . . . . . . . . . . . . . 6
2.1.4 Kerberos . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Vulnerabilities inside Active Directory . . . . . . . . . . . . . 7
2.3 Azure Directory Passwords . . . . . . . . . . . . . . . . . . . 7

2.3.1 Password policy . . . . . . . . . . . . . . . . . . . . . 7
2.4 Azure Active Directory . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 MFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Conditional access . . . . . . . . . . . . . . . . . . . . 8
2.4.3 Compliance policies and bitlocker . . . . . . . . . . . . 8

2.5 Google (Cloud) Workspace . . . . . . . . . . . . . . . . . . . 9
2.6 Phishing and Spam in corporate environments . . . . . . . . 10

3 (A)AD Vulnerability Cycling 12
3.1 FRIS in action . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 SOTA AD Pentesting 17
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Overlap between SOTA . . . . . . . . . . . . . . . . . . . . . 18
4.4 SOTA AD vulnerability finding . . . . . . . . . . . . . . . . . 20

5 Google Workspace auditing 21
5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Vulnerability Assessment . . . . . . . . . . . . . . . . . . . . . 22

6 Corporate Phishing Simulation 24
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Iterative Improvement . . . . . . . . . . . . . . . . . . . . . . 26

1



6.3 Sophistication . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.1 Attack 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.2 Attack 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3.3 Attack 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3.4 Uniquely identifying every user . . . . . . . . . . . . . 31

6.4 Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Besieger: Automatic web pentesting 32
7.1 Surface level vulnerabilities . . . . . . . . . . . . . . . . . . . 33

7.1.1 HTTP(s) (headers) . . . . . . . . . . . . . . . . . . . . 33
7.1.2 Cookie vulnerabilities . . . . . . . . . . . . . . . . . . 35

7.2 Version identification and exploitation . . . . . . . . . . . . . 36
7.3 Fuzzing and crawling . . . . . . . . . . . . . . . . . . . . . . . 36
7.4 DNS and subdomain enumeration . . . . . . . . . . . . . . . . 37
7.5 Web Application Firewalls (WAF) . . . . . . . . . . . . . . . 37
7.6 SSL and ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.7 Other attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Scan results on real-life environments 38
8.1 Active Directory . . . . . . . . . . . . . . . . . . . . . . . . . 38

8.1.1 Main Report . . . . . . . . . . . . . . . . . . . . . . . 39
8.1.2 Management summary . . . . . . . . . . . . . . . . . . 39

9 Related Work 44

10 Discussions 45
10.1 Discussion points . . . . . . . . . . . . . . . . . . . . . . . . . 45

10.1.1 Interpretation of results . . . . . . . . . . . . . . . . . 45
10.1.2 Comparison with previous research . . . . . . . . . . . 45
10.1.3 Limitations and future research . . . . . . . . . . . . . 46
10.1.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . 46

10.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11 Conclusions 48

2



Chapter 1

Introduction

Corporate environments are organizations or businesses that operate with
the goal of generating profits. These environments often handle sensitive
information such as financial data, intellectual property, and personal infor-
mation of employees and customers. Because of this, security is extremely
important in corporate environments [5].

There are several reasons why security is often disregarded in corporate
environments. One reason is that companies may prioritize cost-cutting
measures over security, leading them to neglect investing in strong security
measures [1]. Another reason is that some companies may not have a clear
understanding of the risks and vulnerabilities that exist within their systems,
leading them to underestimate the importance of security [9]. Additionally,
some companies may have a culture that does not prioritize security, which
can lead to a lack of attention to security protocols and practices [13].

It is common for corporate environments to use solutions from Microsoft
or Google for their domains. These companies offer a range of products and
services such as email, cloud storage, and productivity tools that are widely
used by businesses [43, 59]. Most often used are Google Workspace and
Microsoft (Azure) Active Directory. Using solutions from these companies
can help organizations streamline their operations and improve productiv-
ity, but it is important for companies to also ensure that they have adequate
security measures in place to protect their sensitive data [19].

Overall, security is crucial in corporate environments as it helps to protect
sensitive information and prevent unauthorized access or breaches [64]. It is
important for companies to prioritize security and invest in strong security
measures to protect their assets and maintain the trust of their employees
and customers [5].

3



This paper presents a novel approach to Google Workspace and (Azure) AD
security improvement, which is an automated pipeline that encapsulates the
entire security improvement cycle, with the goal of maximum security im-
provements with minimum effort. In order to facilitate these systems, we
present our novel security system called Stronghold. This system aims to:

• Find as many vulnerabilities in the Google/(A)AD environment as
possible.

• Offer information about all found vulnerabilities.

• Offer links and further reading for all found vulnerabilities.

• Offer impact analysis for possible patches to make sure the system
keeps working properly after patching.

• Offer solutions for all vulnerabilities, completing the pipeline.

This system fits our aims because it offers a complete step-based pattern
to quickly 1 find the problem 2 understand the problem 3 possibly read
deeper into the problem 4 analyze the impact of the problem and 5 solve
the problem. The user quickly embarks on a guided journey that allows him
to improve his security without ever having to really leave our assessment
ecosystem. The ease of usability is further underlined by offering complete
web pages and reports. The urgency gets underlined by a set of security
scores that are generated based on our findings. Our work for Microsoft is
somewhat related to the Purple Knight [11] and the PingCastle [41] tools,
both are security frameworks based upon finding vulnerabilities in (Azure)
Active Directory. We differ from these systems by finding more vulnerabili-
ties and by going further than just finding problems, introducing our FRIS
pipeline.

Our work for Google is novel, as far as we know of, there are no auto-
matic tools to enumerate weaknesses in Google workspace settings, which
was confirmed by a google employee after a support call from our end [17].

Our first chapter is about the preliminaries of this research, diving into the
Google Workspace and (Azure) Active Directory infrastructures and about
the possible sources of vulnerabilities. We then provide a scientific hypoth-
esis and explain the requirements of our proof and provide the research we
did. We then dive into related work and the current state of the art in
vulnerability frameworks for Google and (Azure) Active Directory. We then
conclude with our results and a direct comparison between our framework
and existing systems.

4



Chapter 2

Preliminaries

This chapter aims to introduce the concepts that are important in order to
fully understand the depth of the work and the concepts that are discussed
in later chapters. It aims to give an extensive overview of the underlying
structures that form the foundation of this work. In order to fully under-
stand vulnerabilities it is quite essential to grasp the structures that facilitate
them.

2.1 Active Directory

Active Directory is a Microsoft system that functions as a directory service
for the Windows domain [12]. It is composed of a set of processes and ser-
vices, the primary one being the Domain Service Role, or Domain Controller.
This server authenticates, authorizes, enforces policies, stores information,
and provides rights and roles to all members of the Domain. The active
directory environment is comprised of multiple components with individual
functions and vulnerabilities.

2.1.1 Services

Active Directory (AD) services provide a centralized, secure, and globally
managed repository of user and resource data [47]. The main services are
authentication, authorization, user management, and information storage.
Authentication verifies the identity of a user in the network, while authoriza-
tion grants access to resources or services. User management tasks include
creating, managing, and deleting user accounts. Information storage enables
users to store and manage data in a secure and reliable manner. Addition-
ally, AD services provide single sign-on (SSO) capabilities, allowing users
to access multiple systems and applications with a single login [3]. AD also
offers directory synchronization, which allows organizations to keep multiple
directories in sync across multiple computers and locations. Overall, Active

5



Directory services provide a robust and secure platform for managing user
and resource data.

2.1.2 Group policies

Group policies enable administrators to centrally manage and control the
configuration of users and computers in a domain [58]. Group policies are
applied to computers or users in a specific organizational unit (OU) which
are placed in a hierarchical structure to divide and manage objects. Group
policies can be used to configure user settings and control computer settings
such as software installations, system updates, network access, security set-
tings and user rights [58]. In addition to controlling the configuration of
objects, group policies are also used to deploy software and scripts across
the network. Group policies enable administrators to manage and control
the configuration of users and computers and deploy applications and scripts
quickly and easily.

2.1.3 Domain name services

Domain name services (DNS) provide a way to locate resources and services
on a network [42]. DNS is used to translate human interpretable names
(e.g. www.example.com) to IP addresses. DNS resolves the named host or
service to its IP address, thus allowing other hosts to connect to it. DNS
also provides a way to organize and manage information in the domain.
All domain computers are registered with a DNS record, which can also
include information about services offered by the host [42]. DNS enables
users to access resources quickly and easily by providing an easy way to
locate resources and services in the domain.

2.1.4 Kerberos

Kerberos is a network authentication protocol used to authenticate users
and services in a secure manner [49]. Kerberos uses tickets to authenti-
cate users and provides strong cryptography to protect the authentication
process. Tickets are obtained from a Kerberos server and the client must
present the ticket to the service to prove their identity [49]. Kerberos is a
trusted third-party authentication protocol and is used by many organiza-
tions to authenticate users and services in the domain. The use of Kerberos
authentication provides an extra layer of security to the domain and ensures
that user credentials are kept safe and secure.

6



2.2 Vulnerabilities inside Active Directory

Active Directory is a powerful directory solution and is used in many organi-
zations for authentication, authorization, and user management [12]. How-
ever, with the increased use of AD, the threats to its security have increased
as well. Some of the common vulnerabilities of AD include weak passwords,
incorrect permissions settings, inadequate patch management, and lack of
auditing procedures [57]. Additionally, there are security vulnerabilities that
exist within the AD framework itself, such as privilege escalation, replication
issues, and denial of service attacks [57]. As with any system, vulnerabilities
exist even if the system is secure in itself. It is important to identify and
address these vulnerabilities to maintain a secure environment.

2.3 Azure Directory Passwords

Azure Directory, like almost every system nowadays, uses passwords for
authentication [33]. Passwords in active directory are of extreme value,
as there is no such thing as Multi-Factor Authentication present in these
environments. Hence knowing a password gives you full access to an account.
Therefore using tools to examine password strength and choice is a big part
of the work we have to do in the assessment of an active directory server.

2.3.1 Password policy

Active Directory uses a global password policy to set certain requirements
for passwords [3]. It allows IT administrators to set a minimum password
length. It also allows them to require complexity, meaning that of lowercase
letters, uppercase letters, numbers, and other symbols, three of these four
have to be used in a password. In addition to this the password policy offers
options for password history, disallowing previous passwords and an option
for password lockout, to specify after how many attempts a user is locked
out and how long it takes before they can log in after a lockout again [58].
Notice that this kind of policy allows for a huge amount of problems to
quickly arise. A to short minimum password length is an enormous problem
because it makes life way too easy for hash crackers. A lockout amount of 0
allows for unlimited login possibilities and password spraying/brute-forcing
attack. Therefore carefully setting up this policy is often one of the most
important responsibilities of the AD administrator.

2.4 Azure Active Directory

Azure Active Directory is the cloud-based alternative for Azure Directory
[33]. While this version does not have the amount of options and depth as

7



Azure Directory, it has a load of different features and defense mechanisms.
A substantial example of this being MFA. The system is a little less prone
to vulnerabilities due to old mechanisms and systems because it is hosted
on Microsoft’s end. It is also newer, meaning fewer vulnerabilities due to
old age occur.

2.4.1 MFA

MFA, short for Multi-Factor Authentication, is the new and upcoming stan-
dard for authentication [38]. This form of authentication adds a second layer
of defense to authentication as it requires users to verify their authentica-
tion requires using a second factor. In practice, this is often by using the
Microsoft authenticator app on their phone. This makes it much harder for
hackers to simply crack a hash and use a password, because now they also
need access to a phone. While MFA is a deal changer in the scene, there are
also some weaknesses known.

1. SMS spoofing, to know a possible sms message [?].

2. MFA often is required only once in x days, so you can still use a
colleagues laptop and use it to bypass MFA.

3. Stolen session cookies can be authenticated for a certain period before
asking for MFA again [38].

2.4.2 Conditional access

In azure active directory, one of your first lines of defense becomes condi-
tional access [33]. Conditional access, as given away by the name, lets you
block traffic or enforce requirements on it based on certain conditions that
you can set up. In practice, this is used to block legacy authentication (non-
MFA authentication). But also to require MFA, to block persistent browser
sessions, noncompliant devices, etc. It can also be used to block certain
countries or exclude certain IP ranges like the company office from MFA
[33].

2.4.3 Compliance policies and bitlocker

Two powerful features which we also think are important security mecha-
nisms inside the AAD environment are compliance policies and a BitLocker
policy [34]. With compliance policies, we can require devices in our network
to be of a certain safe windows version, in addition to this we can require
secure boot to be on and we can also set requirements in how good their
computer pin/password should be [34]. Therefore we can require some basic
safety precautions for devices that want to be on our network. With a Bit-
Locker policy, we can automatically roll out BitLocker on devices, securing

8



their hard disk and making sure that the data on it is properly protected in
case of theft [34].

2.5 Google (Cloud) Workspace

The Google Workspace (formerly known as G Suite) is a collection of pro-
ductivity and collaboration tools offered by Google [28]. It includes a range
of services such as Gmail, Google Drive, Google Calendar, and Google Docs,
which allow users to communicate, store and access files, schedule events,
and create and edit documents online. Some of the key security options
within Google Workspace include:

1. Encryption: Google Workspace uses encryption to protect the confi-
dentiality of users’ data while it is in transit and at rest [27]. This
includes the use of Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) for data transmission, as well as AES and SSL encryp-
tion for data storage.

2. Two-factor authentication: This is an additional layer of security that
requires users to provide a second form of authentication, such as a
code sent to their phone, in order to access their account [22]. This
helps to prevent unauthorized access to users’ accounts.

3. Access controls: Google Workspace allows administrators to set up
user accounts and permissions, which can be used to control access to
different tools and services within the suite [30]. This includes setting
up roles and permissions for different users, as well as specifying the
types of actions that users are allowed to take within the tools.

4. Data loss prevention: Google Workspace includes tools for detecting
and preventing the accidental or unauthorized sharing of sensitive data
[26]. This includes the ability to set up data loss prevention policies
to block the sharing of specific types of data, as well as the ability to
track and audit data sharing activities.

5. Password security: Google Workspace includes tools for managing
password security, including the ability to require strong passwords
and to enforce password expiration policies [31]. Users can also use
tools such as Google’s Password Checkup to check the strength and
security of their passwords.

6. Session length: Google Workspace allows administrators to set the
length of time that user sessions will remain active, which can help to
prevent unauthorized access to accounts if a device is left unattended
[32]. Administrators can also set up inactivity timeout policies to
automatically log users out after a certain period of inactivity.

9



7. Context-aware access: Google Workspace includes context-aware ac-
cess controls, which allow administrators to set up policies that grant
or restrict access to certain tools and services based on the context in
which they are being used [24]. For example, administrators can set up
policies that only allow access to certain tools from specific locations,
devices, or networks.

8. Phishing and spam protection: Google Workspace includes tools for
detecting and blocking phishing and spam emails [29]. These tools use
a combination of machine learning algorithms and user feedback to
identify and block malicious emails. Users can also report suspicious
emails to help improve the effectiveness of the spam filters.

9. SPF, DKIM, and DMARC: Google Workspace supports the use of SPF
(Sender Policy Framework), DKIM (DomainKeys Identified Mail),
and DMARC (Domain-based Message Authentication, Reporting, and
Conformance) to help protect against email spoofing and phishing at-
tacks [23]. These protocols allow administrators to verify the authen-
ticity of emails that are sent from their domain, and to block emails
that fail these checks.

10. External users and external sharing: Google Workspace allows users
to share files and collaborate with people outside their organization
[25]. However, it is important to be cautious when sharing data with
external users, as this can increase the risk of data leaks and other se-
curity vulnerabilities. Google Workspace provides tools for managing
external sharing, including the ability to set up policies that control
who can access shared data and how it can be shared. It is also im-
portant to note that mail forwarding to external addresses is disabled
by default in Google Workspace to prevent data leaks [25].

2.6 Phishing and Spam in corporate environments

Spam and phishing are two forms of online communication that can pose
significant risks to corporate environments [61]. Spam refers to unsolicited
electronic messages, often sent in large volumes, with the intent of promoting
a product or service. These messages can clog up email inboxes and distract
employees from more important tasks. Phishing, on the other hand, involves
the use of fraudulent emails or websites to trick individuals into revealing
sensitive information, such as login credentials or financial information [6].
In a corporate environment, spam and phishing can pose a number of risks.
These include:

• Loss of productivity: As mentioned, spam emails can distract employ-
ees and reduce their productivity. Phishing attacks can also require

10



significant time and resources to investigate and mitigate.

• Data breaches: Phishing attacks can lead to the compromise of sensi-
tive corporate information, such as intellectual property or customer
data [35].

• Financial losses: Phishing attacks can result in the theft of financial
information or the unauthorized transfer of funds [18].

To mitigate these risks, it is important for corporate environments to imple-
ment robust spam and phishing prevention measures. One effective approach
is the use of phishing simulations, which involve the creation and distribu-
tion of simulated phishing attacks to employees [21]. These simulations can
help educate employees about the risks of phishing and test their ability
to identify and report suspicious emails. Other important background
concepts related to phishing simulations include:

• Social engineering: Phishing attacks often rely on social engineering
techniques to manipulate individuals into revealing sensitive informa-
tion or performing certain actions [48].

• Email security: Measures such as authentication and encryption can
help protect against the interception of emails and the compromise of
sensitive information [20].

• User education: Providing employees with training on how to identify
and report suspicious emails can help mitigate the risk of successful
phishing attacks [36].

11



Chapter 3

(A)AD Vulnerability Cycling

We introduce a novel methodology for the vulnerability solving process
called FRIS. This methodology expands the normal pipeline used by a secu-
rity officer to encapsulate the information finding and problem solving part
into the automated and offered pipeline. You can see the original pipeline
and our novel extension of it in the figure below:

Figure 3.1: The old security improvement cycle vs the new one

Let us go more in depth about the FRIS cycle, FRIS stands for Find,
Report, Inform, Solve. A pipeline we will explain a little bit more in depth:

1. Find, we find a vulnerability and confirm that it is present automati-
cally

2. Report, we generate HTML documentation about the found vulnera-
bilities but also an HTML page per single vulnerability. In addition to

12



this, we use our novel scoring system to score the target on multiple
categories and to give each vulnerability its own unique score.

3. Inform, inside our report, we offer information, so that the security re-
searcher using Stronghold is immediately capable to continue his jour-
ney inside the vulnerability. Using summaries we wrote, but also links
towards articles and official documentation, we allow the researcher to
catch up on the topic and go more in-depth in a very short amount
of time. Ensuring that all needed resources are already in hand reach
by providing them to the security researcher through links. We also
provide an impact analysis to go in-depth about possible interference’s
of solutions with the system.

4. Solve, we offer steps that can be followed to solve the problem and
often offer a power shell script to immediately patch the vulnerability.

In a normal vulnerability scanning environment the Find step could be done
by a vulnerability scanner, after which vulnerabilities and returned/reported
and the Security Officer has to find information about the vulnerability/con-
text himself, our aim is to cut time and resources and offer this information
immediately. Making sure to also add links to guides and official documen-
tation to further cut time. In addition to this, we offer the solution as well,
trying to make this pipeline of solving vulnerabilities as fast and encapsu-
lated as possible.

Note that we not only aim to extend this pipeline towards usability and
solving but that we also aim to get a new SOTA in the part of the vulnera-
bility assessment pipeline that is already present, so finding vulnerabilities.

3.1 FRIS in action

To showcase FRIS and its ease, we showcase it in a rather small and simple
AD environment. Let us showcase the size of this environment with direct
output of our Stronghold scan:

Figure 3.2: Information generated inside a Stronghold report

13



We already see some interesting things, the environment is rather small
(63) users, but the admin percentage is way too big for what you would
expect in a properly secured environment. The amount of vulnerabilities
found is also quite high. This is a real-life business using Active Directory
on which we ran a Stronghold scan. The scan uses its own scoring system
to score the environment.

Figure 3.3: Scoring an actual corporate environment on security

14



The scores are very low, let us take a further look at the environment and
showcase our new FRIS system. For each vulnerability that Stronghold de-
tects, it creates its own database entry using the FRIS methodology, mean-
ing that we can look at one of the critical vulnerabilities and use Stronghold
to enforce our security.

Figure 3.4: Examining a critical security flaw found by Stronghold

So there we have it, information about our critical vulnerability. This
particular vulnerability makes it easy to just brute-force passwords without
ever being locked out, hence why it is indeed quite critical. Now as you can
see we can reproduce the presence of the vulnerability by simply following
the provided steps, we can also embark further onto our FRIS journey by
looking at a link to the official Microsoft password guidelines that is pro-
vided:

15



Figure 3.5: The inform step of FRIS further expanded

Then, for the last step of FRIS, we also still have to solve the actual
vulnerability, let us embark on the last step in this journey:

Figure 3.6: The solve step of FRIS

Perfect, we have got some user communication to do, the impact anal-
ysis of FRIS is showcased as well here. The PowerShell script provided
actually updates the entire password policy to be conform Microsoft’s best
standards.

16



Chapter 4

SOTA AD Pentesting

In this chapter, we compare our results with the current State Of The Art
in AD vulnerability finding. In order to do this we compare our results with
Purple Knight [11] by Semperis and with Pingcastle [41]. The known SOTA
products in the market for AD vulnerability finding.

4.1 Methodology

For these tests we only consider serious vulnerabilities, that is, vulnerabil-
ities that are considered by Pingcastle [?]as scoring points for the security
score. For Purple knight, we only consider vulnerabilities that are consid-
ered non baseline. (Warnings and criticals). For our own tool Stronghold,
we are even harsher, we only consider vulnerabilities that are either medium
(score > 6), high or critical. Therefore not counting low-scored medium, low,
and baseline vulnerabilities. Note that Stronghold, during the research con-
ducted found around 90-120 vulnerabilities per Active Directory it scanned.
Filtering on serious vulnerabilities therefore partially cripples our system.
We found it important to not only compare the number of serious vulner-
abilities found but to also test how many of the vulnerabilities that other
tools found, were found by Stronghold. We therefore directly compare the
vulnerabilities found to find any vulnerabilities that Stronghold misses.

4.2 Test Environment

Thanks to Fourtop ICT, I had the possibility to test Stronghold inside real
systems. Fourtop ICT is an MSP company that has multiple clients which
leverage Active Directory systems. Most of the time these clients use all
kinds of different AD infrastructures. I have worked with Microsoft server
2008, but I also found a server using Microsoft server 2022. This makes
this environment perfect for testing and developing Stronghold. Note that
all of these environments are used daily by companies that differ in size,

17



I tested at companies with 8 users but also at companies with more than
200 users. It is important to me that we catch different Active Directory
setups with different amounts of security measures and different amounts of
changed settings over the years. The fact that we expose some very serious
security flaws in these corporate environments underlines how helpful this
branch of tools can be.

4.3 Overlap between SOTA

When compared to the vulnerabilities that SOTA tools PingCastle [41] and
Purple Knight [11] find, Stronghold scores very well, it is able to find almost
all vulnerabilities that these tools find, let us first compare our tool with
Pingcastle [41] in 6 different corporate environments:

Figure 4.1: Missed vulnerabilities compared with PingCastle

Note that we only consider serious vulnerabilities for this graph, as dis-
cussed above. If we look at the results we see that we find almost all vulner-
abilities that Pingcastle [?]does. This includes some of the rarer vulnerabil-
ities that we found like WSUS being run over an insecure HTTP protection,
weak certificates, or exchange permissions leading to privilege escalation.
The missing Vulnerability at ANON4 has to do with incomplete subnets.
We have written a script to find these as well, but at the time of testing,

18



this was something that didn’t work properly for ANON4. Let us now take
a look at the vulnerabilities that we find from the ones purple knight found:

Figure 4.2: Missed vulnerabilities compared with Purple Knight

We see that we can find every vulnerability within our test environments
that Purple knight can find. Purple knight goes a little bit less into depth
and more into the more general checks like properties, DCsync rights, and
excessive rights. Some of the vulnerabilities in Purple Knight [11] were
not exactly found in the same way. Purple Knight, for instance, finds that
the exchange server has a property that allows it to have admin rights.
Our system Stronghold finds that exchange has been given many rights
and should have its rights reduced. Because our solution fixes the problem
that Purple Knight found and because we have found the vulnerability but
labeled it otherwise, we find that this is not a vulnerability we missed.

19



4.4 SOTA AD vulnerability finding

In order to fully qualify Stronghold as the new state-of-the-art tool in AD
security assessment, we want to directly compare it with its competitors
in different environments. The aim is to show that we can consistently
outperform the current state of the art to set a new standard in AD pen
testing:

Figure 4.3: Stronghold compared with similar Tools

20



Chapter 5

Google Workspace auditing

In this chapter, we introduce a novel system that we created to scan Google
Workspace for security misconfigurations and related vulnerabilities. Af-
ter discussing with google support we made sure that to the best of our
knowledge there is no tool at the moment that is able to enumerate Google
Workspace for vulnerabilities.

5.1 Methodology

For these tests we look at all kinds of vulnerabilities, that is vulnerabilities
Stronghold marks as baseline, low, medium, high, or as critical. We will add
information about the vulnerability distribution to make sure that we prop-
erly show the findings we did. Note that Stronghold, during the research
conducted found around x vulnerabilities per Google Workspace it scanned.

Thanks to stichting Nuwelijn/Muzerij, I had the possibility to test Stronghold
inside real systems. Nuwelijn/Muzerij is an education foundation that uti-
lizes a Google Workspace environment with 200 staff/teachers and a lot of
students. The fact that we expose some very serious security flaws in this
corporate environment underlines how helpful this branch of tools can be.

To properly audit the Google Workspace environment, we use selenium,
which is a browser automation tool, to log in to the Google admin console
(even with MFA by reproducing a token with the secret key). After logging
in our tool automatically traverses sub-sections of the admin console and
gets values of settings, parameters, and users. Based on these values and
our vulnerability database, we generate a report filled with vulnerabilities
and misconfigurations.

21



5.2 Vulnerability Assessment

At the moment, 29 vulnerabilities can be automatically found withing Google
Workspace environments. This should be extended in the future to over 100
vulnerabilities and misconfigurations that are possible to be found within
Google Workspace environments. The FRIS pipeline, leveraging solutions
and dictionary objects for full vulnerability embeddings is maintained in
our work for Google Workspace. An example of such an embedding can be
found below.

Figure 5.1: Example of vulnerability

The tool then traverses the google admin console and some of the possible
misconfigurations and prints matches. In the future this should be linked to
our reporting environment.

22



Figure 5.2: Example of output

23



Chapter 6

Corporate Phishing
Simulation

In this chapter, we introduce a novel system that does complex phishing
simulations on Google and Microsoft-based environments. Our novel sys-
tem called GateKnocker is designed solely for phishing attacks on these two
corporate environments. There are many known phishing tools and phishing
simulations, however, we wanted to build a system that can function inside
our current FRIS environment, while also having the usability, sophistica-
tion, and specialization options we require. We created the following set of
requirements to adhere to:

• GateKnocker should be fully automated and very easy to use.

• GateKnocker should be diverse in its attacks and amount of sophisti-
cation used.

• Gateknocker should be able to use sophisticated techniques like email
spoofing or link masking techniques.

• Gateknocker should be able to use fully customized HTML templates
for Microsoft and Google environments.

• Gateknocker should be able to identify mistakes by employees on a
per-user basis.

• Gateknocker should include pre-written awareness emails and cus-
tomized quizzes for Microsoft and Google environments.

• Gateknocker should be able to generate HTML documentation within
our FRIS ecosystem.

The two key components to focus on are sophistication and usability. We
aim to get State of the art results in usability to significantly reduce the

24



costs of phishing simulation. On the other hand, we believe that we need
State of the art sophistication to be a proper simulation of real-life events.

6.1 Methodology

Our methodology is developed based on maximum performance increase for
the spotting of phishing by employees. Therefore the goal is not only to
assess the current state of phishing identification within an environment but
also to maximize the skill set of identifying phishing for the employees con-
cerned. Research from [10] proved that repetition is vital for all learning. In
addition, this research from [40] proves that making mistakes is an essential
factor in learning as it helps us adjust wrong behavior. Taking this research
into account, it is important that our system uses a systematic approach
to repeat certain information in different ways, while also making sure said
challenges are not too easy, so employees become aware of the mistakes they
make while identifying phishing. We introduce our novel system called AT
IT:

Figure 6.1: Our novel phishing learning system

25



ATIT, which stands for Alert, Test, Improve Test, is a system that is
based on the way complex language models learn. Like language models,
employees start with a set of knowledge about phishing and how to detect
it, we amplify this knowledge by improving their awareness. Our initial
Alert Step. We then Test to get an initial view of employee performance.
We follow up with our Improve step: a lengthy quiz aimed at identifying
indicators of phishing and improving from past mistakes. We finish with a
reTest inside a new simulation to make a precise measure of made progress.
This leaves us with a set of employees that are fine-tuned on the task of
phishing identification. [15] While this also makes it possible to statistically
grasp the improvements we made.

We have 4-fold repetition and a 3-fold ability to learn from made mistakes,
adhering to the methodology we developed. We get a 3-fold chance to prop-
erly document and report our results within our FRIS ecosystem. We gen-
erate a report of the first simulation, where key awareness is pointed toward
the mistakes that are most often made and the percentage of mistakes made.
We specify our biggest area of growth here and use our quiz and tips to fur-
ther train the employees. After the quiz, we generate a report of the results
from the quiz and compare this with previous iterations to be able to report
on the abilities of this particular batch of employees. We then retest and
generate a third report on the performance of the employees after fine-tuning
and on the improvements that were made using our AT IT methodology.

The novelty of the above system is its encapsulation, while there are tools
for sending phishing emails or for doing quizzes, we offer the entire pipeline
encapsulated, while also automated and reported automatically. The users
are actively confronted with phishing and how to find it three times and are
more informed or protected than after a regular single phishing simulation.

6.2 Iterative Improvement

In machine learning, iterative improvement is the act of approximating the
ideal result in small steps. [45] In phishing environments, awareness created
by phishing simulations and education becomes less over time. Research
from [65] proves that the percentage of clicks in phishing simulations con-
tinues to lower over time, even after 20 simulation campaigns were run. We
believe that in phishing, the employees that have the hardest time identify-
ing phishing are the weakest link. As they are, by far, the biggest probable
way of entry a phishing campaign could find into your environment. Hence,
taking into account the algorithm for iterative improvement and the ongo-
ing improvements shown when simulating for a longer period of time. We
try to implement our own idea of Iterative Improvement within our AT IT

26



ecosystem: From our simulations so far, we see that there is an approximate
conversion rate of between 10-20 percent in a properly set up environment.
We hence take the users that were tricked by our test, together with the
10 percent of worst-scoring employees on our quiz, and apply a follow-up
learning step and simulation to reiterate their improvement cycle. We do
this after a period of one month has passed. We also advise companies to
redo phishing simulations every x year, to make sure they stay up to date
with the latest sophisticated attacks discovered in the world of phishing.

27



6.3 Sophistication

We subdivide the number of users inside an organization into three groups,
with three different types of attacks and three different phishing emails. This
approach is aimed to test the environment for multiple different sources of
attack and sophistication. In addition, the attacks are highly customized
for the environment they try to penetrate.

6.3.1 Attack 1

The first attack is not aimed to surpass anti-spam (if present), as many
phishing attacks will get detected and classified as spam. Let us show our
HTML example for a Google environment:

Figure 6.2: GateKnocker first attack

This attack is designed to be sophisticated and to get people to recog-
nize the familiar Google check activity dashboard. It tests how well people
spot this sophisticated attack and how well people check links and their
spam sections. We can execute the attack with or without a handy piece of
software called maskurl. This means that we can either use a bit.ly link or
a https:www.google.com/security-measures@ZDFA kinda link. The HTML

28



uses personal information (the victim’s email) and looks realistic. We have
a similar-looking example for Microsoft businesses:

Figure 6.3: GateKnocker first attack

Note that while these attacks are sophisticated, they are also realistic
and have even some build-in flaws we hope employees can use to recog-
nize phishing/spam and which we can point out after a successful phishing
simulation. The flaws here are:

• Send from a Gmail/outlook account closely related to the organization
(for example for IeThee the mail comes from IeThee@gmail.com). The
fact that the company domain is not used is an indication of possible
phishing and should also mark emails as external when an environment
is properly set up.

• Sophisticated emails like these should be marked as spam, which is a
huge indicator that there could be something wrong with this mail.

• The name of the sender is Googl Support or Microsof Support. Notice
the missing letter that should be an indicator of something being off.

• The link is either a bit.ly link or a google @ZDfA link, both are hidden
but when hovering over the link should be an indicator of phishing.

29



6.3.2 Attack 2

The second attack will use email spoofing as its primary weapon, email
spoofing is an attack in which we use a mail tool to send the email as if
it comes from someone inside the organization. In this example, we use
the fact that we send out phishing awareness emails earlier and fake a mail
from internal IT staff that asks you to enable enhanced phishing protection
settings and provides a link. We spoof the email address of someone working
in IT and copy their mail signature to the end of our phishing mail, we then
provide a link that is either a bit.ly link or a google @ZDfA link that directs
to accounts recovery settings. We test credibility, email spoofing detection,
and the use of credible information in phishing. We make sure there are
also some weaknesses in this attack. The first one is a banner/spam section
which should be attached by properly configured anti-spam.

Figure 6.4: Email spoofing warning banner

Other weaknesses are:

• The link can be spotted again.

• The sender has no profile picture in spoofed mail while he has one in
non-spoofed mail.

• The email should enter the spam section if spam settings are configured
well enough.

6.3.3 Attack 3

The third attack is the most simple but also the most effective, as in our
experience, it seems to bypass the spam settings. We do not use links to
track who failed this attack. We create a simple email message from google
support that asks a user if they can ask a single local IT personnel to disable
the MFA of the victim. Leaving him/her vulnerable to attacks, we then
monitor who of the victims actually mails our IT personnel asking him to
disable the Multi-Factor Authentication. The email tests common sense and
user reaction when not helped with banners/spam filters. There are some
weaknesses in this mail again:

• Send from a Gmail/outlook account closely related to the organization
(for example for IeThee the mail comes from IeThee@gmail.com). The

30



fact that the company domain is not used is an indication of possible
phishing and should also mark emails as external when an environment
is properly set up.

• The name of the sender is Googl Support or Microsof Support. Notice
the missing letter that should be an indicator of something being off.

• The mail asks to disable security settings, which should be a red flag
without any other indicators already.

6.3.4 Uniquely identifying every user

We use the website wasitviewed.com and python to create custom emails
for every user we mail to. We swap in their details and also create a unique
link on wasitviewed. Wasitviewed mails us whenever one of these links is
clicked, sending us the unique identifier as well and excluding traffic from
bots and from our IP. This way our phishing bot can automatically register
how many users fell for our traps and also exactly which users. Which is
very handy information to register and to use to automate our reporting
step.

6.4 Quiz

A phishing quiz is a tool that presents users with a series of simulated phish-
ing attempts and asks them to identify the signs of a phish. This type of
quiz can be an effective way to educate users about the types of tactics
that attackers may use and help them become more vigilant in recognizing
phishing attacks. We use our quiz to make sure our employees are trained to
recognize the key patterns of phishing attacks, with a focus on the grammar
of phishing emails, email addresses where mails are from, emails trying to be
someone they are not, phishing and spam banners, email spoofing, and link
authentication. With these examples and tips, we hope to use iterative im-
provement to take small steps in correcting the mistakes employees make in
identifying phishing. We also introduce the examples employees were tricked
by in our phishing simulation, allowing them to see the exact indicators they
missed and providing a sense of urgency to our quiz. We specify these in-
dicators and ask users to identify all indicators in various emails, training
them on this and also telling them how to identify the ones they missed by
automatic grading and tips provided in the Google forms/Microsoft forms
environments.

31



Chapter 7

Besieger: Automatic web
pentesting

In this chapter, we introduce a novel system that does complex web server
audits. Our system called Besieger is designed solely for automated pen-
etration tests of web related environments. There are many known web
vulnerability scanners for this, however, we wanted a free tool that is able
to get STOTA results in multiple web categories. We desire to focus on
real-life environments, specializing on realistic real-life vulnerabilities and
problems such as outdated software and probable mistakes. We utilise the
power of open source for this and try to improve on state of the art tools
such as Nessus, Acunetix, Invicti and Burp Suite Professional. We created
the following set of requirements to adhere to:

• Besieger should be fully automated and very easy to use.

• Besieger should have multiple speed options and should consist of a
high amount of different modular sub scanners that are select-able and
combine-able.

• Besieger should be fully based on free and open source software.

• Besieger should be a very complete web attack tool, taking into ac-
count some OSINT attack vectors, some google dorking related attack
vectors and version related attack vectors.

• Besieger should be able to chain attacks and use results of earlier
modules in later modules.

• Besieger should be able to outperform the current state of the art
DAST tools in real-life environments. It is a clear goal to perform
better on this kind of environments, we do not care about performing
better in test environments or in purposely vulnerable web applica-
tions.

32



• Besieger should be able to have a nice and easy console interface and
coloring.

• Besieger should be focused on being a complete tool that is usable for
Penetration Tests and reports of web applications.

Besieger is a command line tool, the only input it needs is a single URL.
After a quick check to ensure the URL is actually reachable and correct, the
scan automatically starts its magic.

Figure 7.1: A first glance at the CLI

7.1 Surface level vulnerabilities

When developing a brand new DAST tool, it is important to implement the
basic but still often very handy sub-tools. We find it important to review
websites based on HTTP settings, headers and cookie security. These are all
fundamental and easy checkable elements that can still lead to some serious
vulnerabilities when improperly implemented.

7.1.1 HTTP(s) (headers)

Besieger is able to find the following vulnerabilities:

• Clickjacking

• Missing security headers

• Incorrect security headers

33



• Content Security Policy bypasses

• HSTS and SRI checks

• Redirection and STS checks

It uses a combination of customly written code and external tools for this,
such as nuclei and the Mozilla observatory. All findings are reported with
our custom highlighting and printing system, that is partially inspired by the
way nuclei prints it output. Let us show an example from running besiegers
http module on the website of the Radboud University (https://www.ru.nl):

Figure 7.2: Missing HTTP(s) headers

We see some missing headers, of which none are really dangerous, the
most important headers (same-origin-policy, x-frame-options, content-source-
policy and anti-xss header) seem to all be implemented, as can be expected
from an organisation like Radboud. This makes it even nicer that we have
found vulnerabilities using Besieger, there is a low vulnerability inside the
X-Content-Type-Options header because the value is set to an in-legitimate
value. Our second module also finds a low vulnerability:

34



Figure 7.3: CSP can be bypassed

The Content Source Policy (CSP) of the Radboud can be bypassed in
quite a few ways! It contains a few links not set strict enough, allowing
bypassing via JSONP endpoints and it also misses an object-src and base-
uri.

7.1.2 Cookie vulnerabilities

Besieger currently contains two cookie audit modules, one is manual and
external and the other one is automated. Our first module is part of our
Manual check library, which we will discuss in depth later. It automatically
shows results from some websites that audit the input website on cookie
privacy and compliance laws. The second module was custom coded and
checks for the presence of the secure flag, the samesite flag and the httponly
flag. We also check for the presence of session cookies and session ids, and
adjust the height of the vulnerability based on this information. Let us show
some of the results of this module on the website of a Brasilian University:
ufsc.br.

35



Figure 7.4: Insecure session cookies

This example website uses highly insecure session cookies, we use http-
cookiejar to detect cookies and session cookies. In this case the name also
gives away that this is ID for a PHP session. This particular cookie has
none of the flags set that should be used to properly protect the cookie.

7.2 Version identification and exploitation

The process of detecting software versions and identifying potential vulner-
abilities requires the use of multiple tools and techniques [53]. One such tool
is Wappalyzer, which specializes in fingerprinting technologies and employs
a combination of regular expressions and dynamic detections to accurately
identify software components and their versions [63]. Another tool, Nuclei,
is a fast and customizable vulnerability scanner that uses templates to iden-
tify software versions and potential vulnerabilities [51]. Additionally, Nmap,
a widely-used network scanning tool, is employed for port fingerprinting,
which can help uncover vulnerable services running on target systems [44].
Web scraping techniques are also used on websites like webtechsurvey.com,
employing the Selenium framework to gather information about software
components [56].
By combining the fingerprints obtained from these tools, it is possible to
cross-reference them against known vulnerability databases, such as the Na-
tional Vulnerability Database (NVD) [50], searchsploit [55], and vulners [62].
This process often uncovers numerous vulnerabilities that might be missed
by other scanners, increasing the chances of identifying exploitable software
components [53].

7.3 Fuzzing and crawling

Fuzzing and crawling are essential techniques for identifying security vul-
nerabilities in web applications and services [60]. Tools like Katana [37],
Arjun [7], and dirsearch [14] are employed to identify and fuzz endpoints.
These fuzzed tools are then used to check for various security issues, such as

36



SQL injection, cross-site scripting (XSS), and path traversal [52]. Moreover,
this process can help identify potentially sensitive or configuration files that
might be exposed [60].

7.4 DNS and subdomain enumeration

Automated investigation of DNS records is conducted to check for blacklists,
misconfigurations, and settings such as SPF, DKIM, and DMARC [2]. If an
open SMTP service is detected by Nmap, a submodule is used to audit it [44].
For subdomain enumeration, multiple tools like Amass [4] are combined to
generate passive lists of subdomains, followed by active tools and wordlists
to generate possible subdomains [16].
The results are filtered based on their HTTP response codes, and further
checks for subdomain takeover and identification of secrets on all domains
are performed [2]. These domains can also be used for further manual labor
if necessary.

7.5 Web Application Firewalls (WAF)

To identify WAFs and attempt bypasses, multiple tools are used [?]. Tech-
niques for bypassing WAFs include searching DNS history for the original
IP behind the WAF and checking if the WAF does not support certain of-
fered ciphers [8]. A benchmark of the WAF’s performance is compared to a
median to evaluate how effectively it stops malicious queries [39].

7.6 SSL and ciphers

SSL and cipher configurations are inspected for potential misconfigurations
and weaknesses [54]. This includes checking for outdated protocols like SSL
2.0/3.0 and TLS 1.0/1.1, as well as weak ciphers, server bugs, and lack of
forward secrecy [46]. Additionally, normal checks for TLS/SSL configura-
tions are performed to ensure the security and robustness of the encrypted
communication [54].

7.7 Other attacks

Besieger uses a wide range of other attacks, such as a manual tour around
Censys, Shodan and various google dorks. It also has specific attacks on
Drupal and Wordpress, checks for secrets, tries http request smuggling, de-
serialisation attacks, header poisoning, CSRF and more. However for brevity
not all features are included.

37



Chapter 8

Scan results on real-life
environments

In this chapter, we apply some of the systems and methodologies that were
designed onto real life organisations that have allowed us to scan their en-
vironment and to take part in this research as anonymous companies. We
are going to find vulnerabilities and apply our vulnerability cycle onto the
found vulnerabilities in this chapter. The companies have been chosen on
size, thinking it would be beneficial for tests to scan bigger organisations,
because that is more likely the place where the tools are going to be used.
The companies have been chosen without prior knowledge of the security
standard of the environment concerned.

8.1 Active Directory

We have scanned the Active Directory environment of a company that has
more then 900 users, it has 54 domain admins and has been used for several
years. Apart from the number of users, we didn’t know anything about this
before scanning. Due to RSAT not being available, we might have missed
some certificate based vulnerabilities. There where also minor bugs due
to not being able to run directly on a DC, but nothing that should have
impacted scanning to much.

38



8.1.1 Main Report

After running our vulnerability scan system on one of the AD servers in the
network we extracted the generated files and inserted them inside of their
css/js container. We obtained the following Fortifier report:

Figure 8.1: Fortifier AD Report

Results show that we have found 132 vulnerabilities, of which 14 are crit-
ical and 35 are high. The organisation scores 0/100 in almost every category
we grade. The exception is password security, as a okayish password policy
with minimum length = 8, complexity required and a lockout threshold of
5 was implemented. The score for password security is still only 20 due to
some critical vulnerabilities we discuss later on. Admin security scores 7 out
of a possible 100.

8.1.2 Management summary

We will take a look at some of the various vulnerabilities presented to give a
complete view of the output fortifier generates, the emphasis will be on the
higher vulnerabilities, as they often have more impact and usability, but we
will also display some of the lower rated vulnerabilities identified as Fortifier
aims to be fairly complete.

39



Let us start by taking a look at the top 7 vulnerabilities identified:

Figure 8.2: Fortifier top 7

Some serious vulnerabilities can be found. Windows server 2008 stopped
being securely supported by Microsoft in 2020, which means it has been
pretty insecure for approximately 3 years at the time of writing. According
to Nessus it is already a 10/10 vulnerability on the CVSS3 scale, windows
server 2000 and 2003 are even worse. In addition to this, approximately 30
accounts were found that had no password set. There also was a certificate
that had a very bad parameter that allows arbitrary users to upgrade them-
selves to domain admin via the creation of malicious certificates. There were
also windows XP computers found that were doing critical tasks, namely be-
ing an essential factor of an entry pass generation system. In addition, vari-
ous servers and domain controllers missed for 167 days of security patches by
Microsoft. The vulnerabilities found point the overview of an environment
that once was way bigger then 900 users, with the amount of servers on the
network.

40



Now let us introduce another 7 very highly rated vulnerabilities:

Figure 8.3: 7 more high rated vulnerabilities

The first vulnerability found is about kerberroasting, which allows at-
tackers to try and get the cleartext passwords of privileged domain users.
Because a certain value is set, the account is not protected by the lockout
password policy and hence the password can be bruteforced on the AD and
therefore found if relatively weak. There were 4 admin accounts that were
vulnerable to this, with three of them having a weak password, reflecting
the critical value the vulnerability got assigned.
The second vulnerability is about the amount of domain admins, every do-
main admins (as demonstrated by the kerberroasting above) is a way to pwn
the entire domain, therefore there never should exist so many admins.
The third vulnerability is the high amount of inactive admins, admin ac-
counts that are inactive for a long period of time form an unneeded risk,
amplified by the fact that they often belong to users who have left an or-
ganisation.
There were also passwords of users found in online lookups and dictionary,
42 users had their password leaked, including 3 administrators.
SSl 3.0 was used for internal communication by servers, as SSL 3.0 is long
outdated and very vulnerable, this was also reported as high vulnerability.

41



Let us introduce a few more of the high vulnerabilities that were found:

Figure 8.4: 7 more high rated vulnerabilities

Figure 8.5: 7 more high rated vulnerabilities

Let us also show some lower vulnerabilities that are still highly usable
for remediation:

42



Figure 8.6: 7 randomly chosen medium vulnerabilities

Figure 8.7: Some low/baseline vulnerabilities

43



Chapter 9

Related Work

Currently, there are a number of approaches to improve the security of AD.
These include manual processes such as setting up Group Policies and Secu-
rity Policies, as well as various tools, such as Microsoft’s Security Compliance
Manager and Microsoft’s Advanced Group Policy Management. These tools
can be used to detect and address security vulnerabilities in AD, but they
are labor-intensive and require extensive expertise.
In addition, there are a number of open-source and third-party solutions
available for AD security, such as Splunk, Rapid7, AlienVault, and Qualys.
These solutions provide automated vulnerability scanning and reporting,
but they do not provide a comprehensive solution for the entire security
improvement cycle.
The current accessible state of the art tools are PingCastle and Purple
Knight. These tools offer a wide range of features, such as detailed reporting
and analysis, but they are limited to manually-defined security policies and
do not provide a comprehensive solution for the entire security improvement
cycle. Most tools get stuck on the first two steps of the FRIS system. They
only Find and Report vulnerabilities. These tools, however, are excellent
for finding a big amount of vulnerabilities in a short amount of time. We
improve their State of the art approach and find even more vulnerabilities.

44



Chapter 10

Discussions

10.1 Discussion points

In this study, we proposed the Stronghold system, a novel approach to au-
tomating the security improvement cycle for both Microsoft and Google
environments. Our primary aim was to develop tools that could effec-
tively address vulnerabilities in Active Directory, Azure Active Directory,
Google Workspace, and Google Cloud while also providing automatic audit-
ing, phishing simulations, and remediation capabilities. Although we had
ambitious goals, we were able to achieve significant success in several aspects
of our research.

10.1.1 Interpretation of results

The Stronghold system demonstrated state-of-the-art results in vulnerability
detection and remediation. Furthermore, we introduced the FRIS pipeline,
which provided valuable information, further research, and direct solutions
for addressing the discovered vulnerabilities. These results highlight the
potential of the Stronghold system to effectively combat security threats in
corporate environments, particularly in scenarios where budget constraints
often lead to the negligence of security issues.

10.1.2 Comparison with previous research

Compared to existing solutions, the Stronghold system offers a more com-
prehensive approach to security improvement. By targeting both Microsoft
and Google environments and incorporating a seamless process from vul-
nerability detection to remediation, our system offers a unique solution to
address the ever-evolving cybersecurity landscape. Additionally, the focus
on usability and speed sets our system apart from other state-of-the-art
solutions, making it more accessible and cost-effective for organizations to
implement and maintain.

45



10.1.3 Limitations and future research

Despite our successes, there were limitations to our study. We acknowledge
that improvements can be made in the Web, Azure, and Google components
of the Stronghold system. Moreover, we aim to surpass the current state-
of-the-art in even more benchmarks in future research. It is also essential
to continually update and refine our system to keep up with the rapidly
changing cybersecurity landscape.

10.1.4 Implications

The Stronghold system has significant implications for the security of corpo-
rate environments utilizing Microsoft and Google platforms. By providing
an effective, user-friendly, and cost-efficient solution to identify and address
vulnerabilities, organizations can better protect their digital assets and re-
duce the risk of cyberattacks. Furthermore, the development of the FRIS
pipeline offers valuable resources for IT professionals to research and re-
mediate detected vulnerabilities, further strengthening the overall security
posture of their organizations.

10.2 Future work

• Create toolset for automatic wifi pentesting to be included in our in-
ternal network scan.

• WhistleBlower, automated scanning, automated mail notifications, au-
tomated discovery of new subdomains. Add compability to make For-
tifier a passive scanning tool that keeps evaluating for possible security
holes.

• During this research we created a basic Azure scanner which didn’t
yet scan enough to be labeled STOTA, we plan to extend this and set
a new STOTA in Azure vulnerability scanning.

• Automatic generation of 3D networks with all the sub-fields we audit
for inside the main section of our automatic generated report. This
would allow for more comprehensive and detailed visualization of the
networks being tested and the sub-scores of departments.

• A segmentation graph generator that generates graphs of networks
audited and the segmentation in them based on simple inputs. This
would provide a clear overview of the different segments and sub-
networks within a network.

• Beekeeper: a custom system to add honeypots to environments and
websites and to trigger alerts from these. This would allow for the

46



detection of potential attacks and provide valuable information about
the techniques and methods used by attackers.

• Librarian: an automatic toolset for source code analysis. This would
enable automated scanning of source code for vulnerabilities and po-
tential security issues, making it easier to identify and fix any issues
before deployment.

• Rumourwatcher: an employee OSINT model that gets info about em-
ployees from a number of sources and generates password lists from
these.

• Physical pentesting possibilities and tools. This would involve testing
the physical security of a facility, such as access controls, cameras,
and alarms, to identify any vulnerabilities and to ensure the safety of
employees and assets.

• Pentesting with reinforcement learning. This would involve using ma-
chine learning algorithms to improve the efficiency and effectiveness
of pentesting by automating the process and learning from previous
pentesting results.

• Language model trained on pentesting/hacking books and info. This
would be a language model that has been trained on large amounts of
pentesting and hacking information to assist in identifying vulnerabil-
ities, generating attack scenarios and more.

47



Chapter 11

Conclusions

In conclusion, our research demonstrates the potential of the Stronghold
system to address the ongoing security improvement cycle in both Microsoft
and Google environments. By automating vulnerability detection and re-
mediation and providing a comprehensive solution for IT professionals, the
Stronghold system offers a promising approach to enhancing cybersecurity
in corporate settings. Future research should focus on refining the sys-
tem’s components and surpassing current state-of-the-art benchmarks to
ensure that the Stronghold system remains effective and relevant in the
ever-evolving world of cybersecurity. It should extend and improve to set a
benchmark that surpasses the STOTA performance in all of its categories.

48



Bibliography

[1] A. Acquisti and J. Grossklags. Security and Decision Making, pages
10–17. IGI Global, 2012.

[2] Mohammad Al-Duwailah, Ahmad Al-Hammouri, and Khaled Taha.
Comprehensive dns-based enumeration and analysis of domains. In
2018 IEEE Symposium on Computers and Communications (ISCC),
pages 00134–00139. IEEE, 2018.

[3] R. Allen. Windows Server 2003 Active Directory Design and Implemen-
tation: Creating, Migrating, and Merging Networks. Packt Publishing
Ltd., 2006.

[4] Amass. Owasp amass, 2021.

[5] J. Andress. The basics of information security: Understanding the fun-
damentals of InfoSec in theory and practice. Syngress, 2014.

[6] APWG. Phishing activity trends report, 2018.

[7] Arjun. Arjun: Http parameter discovery suite, 2021.

[8] Mario Heiderich Barnett, Tobias Holz, Pravir Chandra Mehta, Aashish
Nukala, and Carlos Rios. Web Application Obfuscation. Syngress, 2011.

[9] R. Baskerville. Information security governance: Toward a framework
for action. Information Systems Management, 21(3):36–47, 2004.

[10] Robert F. Bruner. Repetition is the first principle of all learning, 2001.

[11] Semperis B.V. Purple castle, 2022. Tool to improve AD security https:
//www.purple-knight.com/.

[12] B. Desmond, J. Richards, R. Allen, and A.G. Lowe-Norris. Active Di-
rectory: Designing, Deploying, and Running Active Directory. O’Reilly
Media, Inc., 2008.

[13] G. Dhillon. Principles of information systems security: text and cases.
John Wiley Sons, 2006.

49



[14] Dirsearch. Dirsearch: Web path scanner, 2021.

[15] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh
Hajishirzi, and Noah Smith. Fine-tuning pretrained language models:
Weight initializations, data orders, and early stopping. feb 2020. Sub-
mitted on 15 Feb 2020.

[16] Zakir Durumeric, David Adrian, Ariana Mirian, and J Alex Halderman.
A search engine backed by internet-wide scanning. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 542–553, 2015.

[17] Google Employee. Personal communication, 2021.

[18] FBI. 2017 internet crime report, 2017.

[19] R. Gandhi, A. Sharma, W. Mahoney, W. Sousan, Q. Zhu, and P. A.
Laplante. Dimensions of cyber-attacks: Cultural, social, economic, and
political. IEEE Technology and Society Magazine, 33(1):28–38, 2014.

[20] S. Garfinkel. Email-based identification and authentication: An alter-
native to pki? IEEE Security Privacy, 3:20–26, 2005.

[21] Gartner. Market guide for security awareness computer-based training,
2018.

[22] Google. 2-step verification, n.d.

[23] Google. Authenticate email with spf, dkim, and dmarc, n.d.

[24] Google. Context-aware access, n.d.

[25] Google. Control who can access google services, n.d.

[26] Google. Data loss prevention (dlp) for google workspace, n.d.

[27] Google. Encryption in transit in google cloud, n.d.

[28] Google. Google workspace (formerly g suite), n.d.

[29] Google. Machine learning in gmail to block sneaky spam, n.d.

[30] Google. Manage user access, n.d.

[31] Google. Password security, n.d.

[32] Google. Set session lengths for google services, n.d.

[33] R. Grimes. Mastering identity with azure active directory. In Proceed-
ings of the 2016 IEEE Systems and Information Engineering Design
Symposium (SIEDS), pages 1–6, 2016.

50



[34] D. Horn. Protecting your enterprise with azure active directory and
windows 10. In Proceedings of the 2017 IEEE Military Communications
Conference (MILCOM), pages 497–502, 2017.

[35] Ponemon Institute. 2018 cost of a data breach study: Global overview,
2018.

[36] M.E. Kabay. Security Awareness: Concepts and Practices. John Wiley
Sons, 2001.

[37] Katana. Katana: A python tool for google hacking, 2021.

[38] A. Kok. Multi-factor authentication: A survey. In Proceedings of the
2018 IEEE Conference on Dependable and Secure Computing (DSC),
pages 1–8, 2018.

[39] Ronald L Krutz and Russell Dean Vines. Cloud Security: A Compre-
hensive Guide to Secure Cloud Computing. Wiley Publishing, 2010.

[40] Lendita Kryeziu. Learning from errors. ILIRIA International Review,
5(1):393, 2015.

[41] Vincent le Toux. Ping castle, 2022. Tool to improve AD security https:
//github.com/vletoux/pingcastle.

[42] C. Liu and P. Albitz. DNS and BIND. O’Reilly Media, Inc., 2006.

[43] J. Lowensohn. Microsoft office 365, google apps
go head to head. https://www.cnet.com/news/

microsoft-office-365-google-apps-go-head-to-head/, 2011.

[44] Gordon Fyodor Lyon. Nmap Network Scanning: The Official Nmap
Project Guide to Network Discovery and Security Scanning. Nmap
Project, 2009.

[45] Rebecca A. Maynard, Rebecca N. Baelen, Phomdaen Souvanna, et al.
Using iterative experimentation to accelerate program improvement: A
case example. Educational Evaluation and Policy Analysis, 46(5), 2020.
First published online May 28, 2020.

[46] Christopher Meyer and Jörg Schwenk. Sok: Lessons learned from ss-
l/tls attacks. In International Workshop on Constructive Side-Channel
Analysis and Secure Design, pages 189–203. Springer, 2013.

[47] M. Minasi and C. Rice. Mastering Windows Server 2003. Sybex, 2004.

[48] K.D. Mitnick and W.L. Simon. The Art of Deception: Controlling the
Human Element of Security. John Wiley Sons, 2002.

51



[49] C. Neuman and T. Ts’o. Kerberos: An authentication service for com-
puter networks. IEEE Communications Magazine, 32:33–38, 2011.

[50] NIST. National vulnerability database, 2021.

[51] Nuclei. Nuclei - fast and customizable vulnerability scanner, 2021.

[52] OWASP. Owasp top ten project, 2021.

[53] Andriy Panchenko, Fabian Lanze, and Igor Ponce-Alcaide. Website fin-
gerprinting at internet scale. In Proceedings of the 23rd Annual Network
and Distributed System Security Symposium (NDSS), 2016.

[54] Ivan Ristic. Bulletproof SSL and TLS: Understanding and Deploying
SSL/TLS and PKI to Secure Servers and Web Applications. Feisty
Duck, 2013.

[55] Offensive Security. Searchsploit manual, 2021.

[56] Selenium. Selenium webdriver, 2021.

[57] R. Sidelnikov. Active directory security: Best practices and vulnerabili-
ties. In Proceedings of the 2018 IEEE Conference of Russian Young Re-
searchers in Electrical and Electronic Engineering (EIConRus), pages
1040–1045, 2018.

[58] W.R. Stanek. Windows Group Policy: Windows Server 2008 and Win-
dows Vista Resource Kit. Microsoft Press, 2009.

[59] D. Sullivan. Google apps for your domain: The
good & the bad. https://searchengineland.com/

google-apps-for-your-domain-the-good-the-bad-12063, 2007.

[60] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute
Force Vulnerability Discovery. Addison-Wesley Professional, 2007.

[61] Symantec. 2018 internet security threat report, 2018.

[62] Vulners. Vulners: Vulnerability data base, 2021.

[63] Wappalyzer. Wappalyzer: Identify technologies on websites, 2021.

[64] M. E. Whitman and H. J. Mattord. Principles of information security.
Cengage Learning, 2011.

[65] Emma J. Williams, Joanne Hinds, and Adam N. Joinson. Exploring
susceptibility to phishing in the workplace. International Journal of
Human-Computer Studies, 120:1–13, 2018.

52


